Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.598
1.
BMC Res Notes ; 17(1): 132, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730318

OBJECTIVES: Bovine seminal plasma proteins perform several functions related to sperm function. Changes in the expression pattern or abundance of seminal proteins are related to changes in the fertilizing capacity of bulls. Considering the role of seminal plasma proteins in sperm function and animal reproduction, we investigated changes in the protein abundance profile in response to sperm morphological changes using a proteomic approach. DATADESCRIPTION: In our present investigation, we employed liquid chromatography coupled with mass spectrometry to elucidate the proteomic composition of seminal plasma obtained from Nellore bulls exhibiting varying percentages of sperm abnormalities. Following semen collection, seminal plasma was promptly isolated from sperm, and proteins were subsequently precipitated, enzymatically digested using porcine trypsin, and subjected to analysis utilizing the Acquity nano UHPLC System in conjunction with a mass spectrometer. This dataset encompasses a total of 297 proteins, marking the inaugural instance in which a comparative profile of seminal plasma proteins in young Nellore bulls, categorized by their sperm abnormality percentages, has been delineated using LC-MS/MS. The comprehensive nature of this dataset contributes pivotal proteomic insights, representing a noteworthy advancement in our understanding of the reproductive biology of the Nellore breed.


Proteome , Semen , Spermatozoa , Animals , Male , Cattle , Semen/metabolism , Semen/chemistry , Proteome/metabolism , Spermatozoa/metabolism , Tandem Mass Spectrometry , Proteomics/methods , Seminal Plasma Proteins/metabolism , Seminal Plasma Proteins/genetics , Chromatography, Liquid
2.
Front Endocrinol (Lausanne) ; 15: 1349000, 2024.
Article En | MEDLINE | ID: mdl-38689732

Recent advancements in reproductive medicine have guided novel strategies for addressing male infertility, particularly in cases of non-obstructive azoospermia (NOA). Two prominent invasive interventions, namely testicular sperm extraction (TESE) and microdissection TESE (micro-TESE), have emerged as key techniques to retrieve gametes for assisted reproduction technologies (ART). Both heterogeneity and complexity of NOA pose a multifaceted challenge to clinicians, as the invasiveness of these procedures and their unpredictable success underscore the need for more precise guidance. Seminal plasma can be aptly regarded as a liquid biopsy of the male reproductive tract, encompassing secretions from the testes, epididymides, seminal vesicles, bulbourethral glands, and prostate. This fluid harbors a variety of cell-free nucleic acids, microvesicles, proteins, and metabolites intricately linked to gonadal activity. However, despite numerous investigations exploring potential biomarkers from seminal fluid, their widespread inclusion into the clinical practice remains limited. This could be partially due to the complex interplay of diverse clinical and genetic factors inherent to NOA that likely contributes to the absence of definitive biomarkers for residual spermatogenesis. It is conceivable that the integration of clinical data with biomarkers could increase the potential in predicting surgical procedure outcomes and their choice in NOA cases. This comprehensive review addresses the challenge of sperm retrieval in NOA through non-invasive biomarkers. Moreover, we delve into promising perspectives, elucidating innovative approaches grounded in multi-omics methodologies, including genomics, transcriptomics and proteomics. These cutting-edge techniques, combined with the clinical and genetics features of patients, could improve the use of biomarkers in personalized medical approaches, patient counseling, and the decision-making continuum. Finally, Artificial intelligence (AI) holds significant potential in the realm of combining biomarkers and clinical data, also in the context of identifying non-invasive biomarkers for sperm retrieval.


Azoospermia , Biomarkers , Sperm Retrieval , Humans , Male , Azoospermia/metabolism , Azoospermia/diagnosis , Biomarkers/metabolism , Biomarkers/analysis , Infertility, Male/metabolism , Infertility, Male/diagnosis , Infertility, Male/therapy , Semen/metabolism , Spermatogenesis/physiology
3.
Medicina (Kaunas) ; 60(4)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38674298

Background and Objectives: The neuroendocrine system plays a crucial role in regulating various bodily functions, including reproduction, with evidence suggesting its significant involvement in male fertility and sperm development. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating polypeptide (PACAP) are expressed in both male and female reproductive tissues, influencing penile erection and regulating steroidogenesis in males. Therefore, our study aimed to compare the protein levels of VIP and PACAP in seminal plasma between healthy controls and sub-fertile patients. Additionally, we sought to correlate the levels of these biomarkers with clinical, functional, and laboratory findings in the participants. Materials and Methods: The study included a total of 163 male participants for analysis. The participants were further stratified into subgroups of fertile and sub-fertile men of four subgroups according to the 2021 WHO guidelines. Seminal plasma concentrations of the neuropeptides VIP and PACAP were measured using human enzyme-linked immunosorbent assay technique. Results: The findings showed statistically significant differences in total sperm count, sperm concentration, total motility, and vitality (p < 0.001) between the fertile group and the sub-fertile group. Specifically, significant differences found between healthy males and oligoasthenospermic patients (p = 0.002), and between asthenospermic and oligoasthenospermic patients (p = 0.039). An ROC analysis showed associated sensitivity and specificity values of 62.2% and 55.6%, respectively, to PACAP seminal levels differentiated between sub-fertile patients from fertile males (p = 0.028). No significant difference in seminal levels of VIP was found between the sub-fertile and fertile groups. Conclusions: Previous research leads to the point of PACAP active involvement in spermatogenesis. In accordance to our study, in human semen samples, we have seen a significance change in PACAP levels amongst patients with low sperm count or with both low sperm count and low motility, hinting at its contribution and acting as a possible factor in this complex process. Thus, alterations in the levels or actions of these neuropeptides have been associated with certain reproductive disorders in males.


Fertility , Pituitary Adenylate Cyclase-Activating Polypeptide , Semen , Vasoactive Intestinal Peptide , Humans , Male , Vasoactive Intestinal Peptide/blood , Vasoactive Intestinal Peptide/analysis , Pituitary Adenylate Cyclase-Activating Polypeptide/analysis , Pituitary Adenylate Cyclase-Activating Polypeptide/blood , Adult , Semen/chemistry , Semen/metabolism , Fertility/physiology , Biomarkers/blood , Biomarkers/analysis , Enzyme-Linked Immunosorbent Assay/methods , Infertility, Male/blood
4.
Exp Biol Med (Maywood) ; 249: 10137, 2024.
Article En | MEDLINE | ID: mdl-38655370

Azoospermia is a serious leading male-factor cause of infertility in couples of childbearing age. The two main azoospermia types, obstructive (OA) and non-obstructive (NOA) azoospermia, differ in their treatment approaches. Therefore, their clinical diagnosis is extremely important, requiring an accurate, efficient, and easy-to-use diagnostic model. This retrospective observational study included 707 patients with azoospermia treated between 2017 and 2021, 498 with OA, and 209 with NOA. Hematological and seminal plasma parameters, hormone levels, and testicular volume were used in logistic regression analysis to evaluate and compare their diagnostic performance, results showed that the optimal diagnostic model is constructed by five variables including semen volume, semen pH, seminal plasma neutral α-glucosidase activity, follicle-stimulating hormone in the serum, and testicular volume, compared with follicle-stimulating hormone-based and testicular volume-based models. The 5-factor diagnostic model had an accuracy of 90.4%, sensitivity of 96.4%, positive predictive value of 90.6%, negative predictive value of 89.8%, and area under the curve of 0.931, all higher than in the other two models. However, its specificity (76.1%) was slightly lower than in the other models. Meantime, the internal 5-fold cross-validation results indicated that the 5-factor diagnostic model had a good clinical application value. This study established an accurate, efficient, and relatively accessible 5-factor diagnostic model for OA and NOA, providing a reference for clinical decision-making when selecting an appropriate treatment.


Azoospermia , Follicle Stimulating Hormone , Testis , Adult , Humans , Male , Azoospermia/diagnosis , Azoospermia/blood , Follicle Stimulating Hormone/blood , Retrospective Studies , Semen/metabolism , Semen Analysis/methods , Testis/pathology
5.
Front Endocrinol (Lausanne) ; 15: 1327800, 2024.
Article En | MEDLINE | ID: mdl-38654926

Introduction: Azoospermia, characterized by an absence of sperm in the ejaculate, represents the most severe form of male infertility. While surgical sperm retrieval in obstructive azoospermia (OA) is successful in the majority of cases, patients with non-obstructive azoospermia (NOA) show retrieval rates of only about 50% and thus frequently have unnecessary surgery. Surgical intervention could be avoided if patients without preserved spermatogenesis are identified preoperatively. This prospective study aimed to discover biomarkers in seminal plasma that could be employed for a non-invasive differential diagnosis of OA/NOA in order to rationalize surgery recommendations and improve success rates. Methods: All patients signed written informed consent, underwent comprehensive andrological evaluation, received human genetics to exclude relevant pathologies, and patients with azoospermia underwent surgical sperm retrieval. Using label-free LC-MS/MS, we compared the proteomes of seminal plasma samples from fertile men (healthy controls (HC), n=8) and infertile men diagnosed with 1) OA (n=7), 2) NOA with successful sperm retrieval (mixed testicular atrophy (MTA), n=8), and 3) NOA without sperm retrieval (Sertoli cell-only phenotype (SCO), n=7). Relative abundance changes of two candidate markers of sperm retrieval, HSPA2 and LDHC, were confirmed by Western Blot. Results: We found the protein expression levels of 42 proteins to be significantly down-regulated (p ≤ 0.05) in seminal plasma from SCO NOA patients relative to HC whereas only one protein was down-regulated in seminal plasma from MTA patients. Analysis of tissue and cell expression suggested that the testis-specific proteins LDHC, PGK2, DPEP3, and germ-cell enriched heat-shock proteins HSPA2 and HSPA4L are promising biomarkers of spermatogenic function. Western blotting revealed a significantly lower abundance of LDHC and HSPA2 in the seminal plasma of men with NOA (SCO and MTA) compared to controls. Discussion: The results indicate that certain testis-specific proteins when measured in seminal plasma, could serve as indicators of the presence of sperm in the testis and predict the success of sperm retrieval. Used in conjunction with conventional clinical assessments, these proteomic biomarkers may assist in the non-invasive diagnosis of idiopathic male infertility.


Azoospermia , Biomarkers , Proteomics , Semen , Humans , Male , Azoospermia/metabolism , Azoospermia/diagnosis , Semen/metabolism , Semen/chemistry , Biomarkers/metabolism , Biomarkers/analysis , Biomarkers/blood , Adult , Proteomics/methods , Prospective Studies , Sperm Retrieval , Case-Control Studies , Spermatogenesis/physiology
6.
Open Vet J ; 14(1): 304-315, 2024 Jan.
Article En | MEDLINE | ID: mdl-38633197

Background: Sodium nitrite (NaNO2) is a chemical substance used to enhance taste, add color, and keep food products fit for consumption for a longer time. NaNO2 gives rise to a negative adverse effect on male reproductive function. Odontonema cuspidatum (OC) is a natural plant that possesses antioxidant capacity. Aim: Our research evaluates the potential beneficial effect of OC extract on the harmful effects caused by NaNO2 on the testicular tissue and sperm characteristics of male rats. Methods: Four groups with a total of forty rats: the control, the NaNO2-received group, the OC-administered group, and the fourth group received both NaNO2 and OC. All groups were administered daily for two months. Sperm characteristics, testicular antioxidant status, qRT-PCR, and histopathological changes were evaluated. Results: Coadministration of NaNO2 and OC, in comparison with NaNO2 alone, contributed to a notable enhancement in acrosomal integrity, decreasing sperm abnormalities and restoring serum testosterone levels. Moreover, such coadministration reduced the oxidative stress marker, malondialdehyde (MDA), and increased superoxide dismutase (SOD) in testicular tissue, lowering TNF-α gene expression, and increasing the expression of P450scc and StAR genes. In addition, the NaNO2 and OC combination decreased the testicular histopathological changes and the Caspase-3 and Proliferating cell nuclear antigen (PCNA) immunoexpression in seminiferous tubules compared with the NaNO2 group. Conclusion: The extract of OC exhibited the ability to decrease oxidative stress and ameliorate the detrimental effects caused by NaNO2.


Antioxidants , Sodium Nitrite , Rats , Male , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Sodium Nitrite/metabolism , Sodium Nitrite/pharmacology , Semen/metabolism , Testis , Oxidative Stress
7.
Elife ; 132024 Apr 19.
Article En | MEDLINE | ID: mdl-38639482

Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.


MicroRNAs , Semen , Male , Animals , Mice , Semen/metabolism , Spermatogenesis/genetics , Spermatozoa/metabolism , Testis/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mammals/genetics
8.
Sci Rep ; 14(1): 9049, 2024 04 20.
Article En | MEDLINE | ID: mdl-38643196

Doxorubicin (DOX) is a highly effective, commonly prescribed, potent anti-neoplastic drug that damages the testicular tissues and leads to infertility. Apigetrin (APG) is an important flavonoid that shows diverse biological activities. The present research was designed to evaluate the alleviative role of APG against DOX-induced testicular damages in rats. Forty-eight adult male albino rats were randomly distributed into 4 groups, control, DOX administered (3 mgkg-1), DOX + APG co-administered (3 mgkg-1 of DOX; 15 mgkg-1 of APG), and APG administered group (15 mgkg-1). Results of the current study indicated that DOX treatment significantly reduced the activities of superoxide dismutase (SOD), glutathione reductase (GSR), catalase (CAT) and glutathione peroxidase (GPx), while increasing the levels of malondialdehyde (MDA) and reactive oxygen species (ROS). DOX treatment also reduced the sperm count, viability, and motility. Moreover, DOX significantly increased the sperm morphological anomalies and reduced the levels of plasma testosterone, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). The administration of DOX significantly increased the expressions of Bax and Caspase-3, as well as the levels of inflammatory markers. Additionally, DOX treatment significantly downregulated the expressions of steroidogenic enzymes (StAR, 3ß-HSD and 17ß-HSD) and Bcl-2. Furthermore, DOX administration provoked significant histopathological abnormalities in the testicular tissues. However, APG supplementation significantly reversed all the testicular damages due to its androgenic, anti-apoptotic, anti-oxidant and anti-inflammatory nature. Therefore, it is concluded that APG may prove a promising therapeutic agent to treat DOX-induced testicular damages.


Apigenin , Oxidative Stress , Semen , Male , Rats , Animals , Rats, Wistar , Semen/metabolism , Testis/metabolism , Antioxidants/metabolism , Doxorubicin/toxicity , Doxorubicin/metabolism , Testosterone
9.
Nucleus ; 15(1): 2339220, 2024 Dec.
Article En | MEDLINE | ID: mdl-38594652

Species' continuity depends on gametogenesis to produce the only cell types that can transmit genetic information across generations. Spermiogenesis, which encompasses post-meiotic, haploid stages of male gametogenesis, is a process that leads to the formation of sperm cells well-known for their motility. Spermiogenesis faces three major challenges. First, after two rounds of meiotic divisions, the genome lacks repair templates (no sister chromatids, no homologous chromosomes), making it incredibly vulnerable to any genomic insults over an extended time (typically days-weeks). Second, the sperm genome becomes transcriptionally silent, making it difficult to respond to new perturbations as spermiogenesis progresses. Third, the histone-to-protamine transition, which is essential to package the sperm genome, counterintuitively involves DNA break formation. How spermiogenesis handles these challenges remains poorly understood. In this review, we discuss each challenge and their intersection with the biology of protamines. Finally, we discuss the implication of protamines in the process of evolution.


Semen , Spermatogenesis , Male , Humans , Semen/metabolism , Spermatogenesis/genetics , Histones/metabolism , Spermatozoa/metabolism , Protamines/genetics , Protamines/metabolism
10.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 500-505, 2024 Apr 10.
Article Zh | MEDLINE | ID: mdl-38565519

piRNA is a class of small non-coding RNA which specifically binds with PIWI protein. It is mainly expressed in germ cells and involved in the regulation of spermatogenesis. The role of piRNA pathway in the regulation of spermatogenesis mainly includes inhibition of transposons, induction of mRNA translation or degradation, and mediation of degradation of Miwi ubiquitination in late-stage sperm cells. With the detection of piRNA in seminal plasma, more attention has been attracted to whether piRNA can be used as a non-invasive molecular biomarker for the evaluation of spermatogenesis. This paper has reviewed recent studies on the mechanism of piRNA pathways mediating spermatogenesis and potential roles of piRNA disorders in the diagnosis and treatment of male infertility.


Infertility, Male , Piwi-Interacting RNA , Humans , Male , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Semen/metabolism , Spermatogenesis/genetics , Infertility, Male/diagnosis , Infertility, Male/genetics , Biomarkers
11.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article En | MEDLINE | ID: mdl-38673743

Semen cryopreservation has played an important role in medically assisted reproduction for decades. In addition to preserving male fertility, it is sometimes used for overcoming logistical issues. Despite its proven clinical usability and safety, there is a lack of knowledge of how it affects spermatozoa at the molecular level, especially in terms of non-coding RNAs. Therefore, we conducted this study, where we compared slow freezing and vitrification of good- and poor-quality human semen samples by analyzing conventional sperm quality parameters, performing functional tests and analyzing the expression of miRNAs. The results revealed that cryopreservation of normozoospermic samples does not alter the maturity of spermatozoa (protamine staining, hyaluronan binding), although cryopreservation can increase sperm DNA fragmentation and lower motility. On a molecular level, we revealed that in both types of cryopreservation, miRNAs from spermatozoa are significantly overexpressed compared to those in the native semen of normozoospermic patients, but in oligozoospermic samples, this effect is observed only after vitrification. Moreover, we show that expression of selected miRNAs is mostly overexpressed in native oligozoospermic samples compared to normozoospermic samples. Conversely, when vitrified normozoospermic and oligozoospermic samples were compared, we determined that only miR-99b-5p was significantly overexpressed in oligozoospermic sperm samples, and when comparing slow freezing, only miR-15b-5p and miR-34b-3p were significantly under-expressed in oligozoospermic sperm samples. Therefore, our results imply that cryopreservation of normozoospermic sperm samples can modulate miRNA expression profiles in spermatozoa to become comparable to those in oligozoospermic samples.


Cryopreservation , MicroRNAs , Semen Analysis , Semen Preservation , Semen , Spermatozoa , Vitrification , Humans , MicroRNAs/genetics , Male , Cryopreservation/methods , Semen Analysis/methods , Semen Preservation/methods , Semen/metabolism , Spermatozoa/metabolism , Sperm Motility/genetics , Freezing , Adult , DNA Fragmentation
12.
Front Endocrinol (Lausanne) ; 15: 1369043, 2024.
Article En | MEDLINE | ID: mdl-38628583

The manipulation of the somatotropic axis, governing growth, has been a focus of numerous transgenic approaches aimed at developing fast-growing fish for research, medicine and aquaculture purposes. However, the excessively high growth hormone (GH) levels in these transgenic fish often result in deformities that impact both fish health and consumer acceptance. In an effort to mitigate these issues and synchronize exogenous GH expression with reproductive processes, we employed a novel transgenic construct driven by a tilapia luteinizing hormone (LH) promoter. This approach was anticipated to induce more localized and lower exogenous GH secretion. In this study, we characterized the growth and reproduction of these transgenic LHp-GH zebrafish using hormonal and physiological parameters. Our findings reveal that LHp-GH fish exhibited accelerated growth in both length and weight, along with a lower feed conversion ratio, indicating more efficient feed utilization, all while maintaining unchanged body proportions. These fish demonstrated higher expression levels of LH and GH in the pituitary and elevated IGF-1 levels in the liver compared to wild-type fish. An examination of reproductive function in LHp-GH fish unveiled lower pituitary LH and FSH contents, smaller follicle diameter in female gonads, and reduced relative fecundity. However, in transgenic males, neither the distribution of spermatogenesis stages nor sperm concentrations differed significantly between the fish lines. These results suggest that coupling exogenous GH expression with endogenous LH expression in females directs resource investment toward somatic growth at the expense of reproductive processes. Consequently, we conclude that incorporating GH under the LH promoter represents a suitable construct for the genetic engineering of commercial fish species, providing accelerated growth while preserving body proportions.


Growth Hormone , Zebrafish , Animals , Female , Male , Animals, Genetically Modified/metabolism , Gene Transfer Techniques , Growth Hormone/genetics , Growth Hormone/metabolism , Luteinizing Hormone/genetics , Semen/metabolism , Zebrafish/genetics , Zebrafish/metabolism
13.
Redox Rep ; 29(1): 2341537, 2024 Dec.
Article En | MEDLINE | ID: mdl-38629506

BACKGROUND: Acrylamide is a toxic substance formed in some foods that require high-temperature cooking processes and has been implicated as a gonadotoxic agent. Zinc, on the other hand, is a known antioxidant with fertility-enhancing properties. Hence, this study was designed to explore the possible ameliorative effect of zinc in acrylamide-induced gonadotoxicity. METHODS: Twenty-four male Wistar rats were randomized into control, acrylamide (10 mg/kg of acrylamide), acrylamide + 1 mg/kg of zinc, and acrylamide + 3 mg/kg of zinc. The administration was via the oral route and lasted for 56 days. RESULTS: Zinc treatment ameliorated acrylamide-impaired sperm quality, normal testicular histoarchitecture, and hormonal balance, which was accompanied by increased testicular malondialdehyde and interleukin-1ß and decreased testicular superoxide dismutase (SOD) and catalase (CAT). Furthermore, zinc prevented acrylamide-induced downregulation of testicular nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and B-cell lymphoma 2 (BCl2) expression and upregulation of testicular nuclear factor kappa B (NF-κB) and bcl-2-like protein 4 (bax) expression. CONCLUSION: In conclusion, zinc may protect against acrylamide-induced testicular toxicity, mediated by its antioxidant, anti-inflammatory, and antiapoptotic effects.


Antioxidants , Apoptosis , Oxidative Stress , Signal Transduction , Zinc , Animals , Male , Rats , Acrylamide/toxicity , Antioxidants/pharmacology , Antioxidants/metabolism , Apoptosis/drug effects , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/pharmacology , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/pharmacology , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/pharmacology , Rats, Wistar , Semen/metabolism , Signal Transduction/drug effects , Zinc/pharmacology
14.
Urologiia ; (1): 80-85, 2024 Mar.
Article Ru | MEDLINE | ID: mdl-38650410

INTRODUCTION: Pro-inflammatory cytokine - tumor necrosis factor-alpha (TNF) is one of the components of the seminal plasma proteome; its meaning has not been definitively revealed. A comparative analysis of the concentration of this protein in the blood serum and in the ejaculate and changes in its level in the semen of men with infertility is f scientific interest. THE PURPOSE OF THE STUDY: determination of TNF- level in the blood serum and seminal plasma of healthy men and patients with reduced fertility. MATERIALS AND METHODS: 70 men of reproductive age with azoospermia (main group, n=18), with oligoastenozoospermia (comparison group, n=18) and with normal spermogram parameters (control group, n=34) were examined. The ejaculate was examined using an SQA-V semen analyzer (MES, Israel). In seminal plasma samples, the concentration of TNF was determined using the alpha-TNF-ELISA-BEST test system (A-8756, Vector-Best LL, Russia). RESULTS: The concentration of TNF- in blood serum had a significant variation (CV=85.31%) and amounted to 2.75+/-2.18 pg/ml, which is 2.55 times lower than the same indicator in seminal plasma (7.01+/-5.98 pg/ml, CV=126.15%, p<0.00001). When comparing the content of TNF- in seminal plasma, significant differences were found in the examined patients (Kruskal-Wallis test H=24.75991; p<0.00001). Pairwise comparison revealed a statistically significant difference in the level of TNF- in seminal plasma between the comparison and control groups (p2-3=0.000023), as well as between the main group and the comparison group (p1-2=0.000043); there were no significant differences between the main and control groups (p>0.05). When determining the content of TNF- in the blood serum, there was no statistically significant difference between the groups (p>0.05). There were no correlations between the concentration of TNF- in blood serum and in seminal plasma (R=0.295374), and the total number of spermatozoa in the ejaculate (R=-0.027945); and the concentration of spermatozoa in the ejaculate (R=-0.042902). DISCUSSION: It is unlikely that TNF crosses into seminal plasma from serum against a concentration gradient. It is most likely that TNF is produced locally in the organs of the reproductive system by resident immune cells or cells involved in spermatogenesis. An increased content of TNF- in seminal plasma in patients of the comparison group may indicate the presence of an inflammatory process in the reproductive system and a reduced fertility of the ejaculate. CONCLUSION: The physiological role of TNF in sperm, its sources in the organs of the male reproductive system, and the pathogenetic mechanisms of the participation of the TNF in pathological processes in male reproductive system still remain unclear. All this justifies the need for further study of the TNF level in seminal plasma in normal conditions and in diseases of the urogenital tract in men.


Semen , Tumor Necrosis Factor-alpha , Humans , Male , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/metabolism , Semen/metabolism , Semen/chemistry , Adult , Azoospermia/metabolism , Azoospermia/blood , Infertility, Male/metabolism , Infertility, Male/blood , Biomarkers/blood
15.
Mol Biol Rep ; 51(1): 588, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38683237

BACKGROUND: Mechanisms by which varicocele causes infertility are not clear and few studies have reported that some miRNAs show expression alterations in men with varicocele. Recently, sperm promoter methylation of MLH1 has been shown to be higher in men diagnosed with varicocele. This study aimed to assess the potential effects of miR-145, which was determined to target MLH1 mRNA in silico on sperm quality and function in varicocele. METHODS: Sperm miR-145 and MLH1 expressions of six infertile men with varicocele (Group 1), nine idiopathic infertile men (Group 2), and nine fertile men (control group) were analyzed by quantitative PCR. Sperm DNA fragmentation was evaluated by TUNEL and the levels of seminal oxidative damage and total antioxidant capacity were analyzed by ELISA. RESULTS: Our results have shown that sperm expression of miR-145 was decreased in Group 1 compared to Group 2 (P = 0.029). MLH1 expression was significantly higher in Group 2 than the controls (P = 0.048). Total antioxidant level and sperm DNA fragmentations of Group 1 and Group 2 were decreased (P = 0.001 and P = 0.011, respectively). Total antioxidant capacity was positively correlated with sperm concentration (ρ = 0.475, P = 0.019), total sperm count (ρ = 0.427, P = 0.037), motility (ρ = 0.716, P < 0.0001) and normal morphological forms (ρ = 0.613, P = 0.001) and negatively correlated with the seminal oxidative damage (ρ=-0.829, P = 0.042) in varicocele patients. CONCLUSION: This is the first study investigating the expressions of sperm miR-145 and MLH1 in varicocele patients. Further studies are needed to clarify the potential effect of miR-145 on male fertility.


DNA Fragmentation , Infertility, Male , MicroRNAs , MutL Protein Homolog 1 , Oxidative Stress , Spermatozoa , Varicocele , Humans , Male , MicroRNAs/genetics , MicroRNAs/metabolism , Varicocele/genetics , Varicocele/metabolism , Varicocele/pathology , Oxidative Stress/genetics , MutL Protein Homolog 1/genetics , MutL Protein Homolog 1/metabolism , Spermatozoa/metabolism , Adult , Infertility, Male/genetics , Infertility, Male/metabolism , Semen/metabolism , Sperm Motility/genetics , Antioxidants/metabolism
16.
Reproduction ; 167(6)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38579760

In brief: In some instances, extra-species breeding in equids is more successful than intraspecies breeding; however, little is known about the immunomodulatory effect of donkey semen and seminal plasma on the mare's endometrium. This study compared the mare uterine inflammatory response during extra- and intraspecies breeding. Abstract: Anecdotal experience suggests horse mares have less post-breeding inflammation and better fertility when bred with donkeys. This study aimed to compare the post-breeding inflammatory response of mares exposed to donkey and horse semen and seminal plasma and evaluate the proteome and metabolome of donkey and horse sperm and seminal plasma. Uterine edema, intrauterine fluid accumulation, polymorphonuclear neutrophils on cytology, and concentrations of progesterone, and pro- and anti-inflammatory cytokines (IL1A, IL1B, IL4, IL6, CXCL8, IL10) were assessed pre- and post infusion of semen and seminal plasma (donkey and horse). The metabolome and proteome were analyzed by LC-MS/MS. Mare cycles bred with horse semen had a greater progesterone concentration than those bred with donkey semen at 8 days post ovulation (P = 0.046). At 6 h post infusion, the inflammatory response due to the donkey semen tended to be lower (P = 0.074). Donkey seminal plasma had anti-inflammatory properties compared to horse semen and seminal plasma, as determined by fewer neutrophils on uterine cytology (P < 0.05). Horse semen resulted in greater concentrations of IL6 and lesser concentrations of IL1B (P < 0.05). PGE1, PGE3, and lactoferrin concentrations were significantly more abundant in donkey sperm and seminal plasma. Prostaglandins play an important role in immunomodulation and might contribute to the response triggered in interspecies breeding. In conclusion, breeding horse mares with donkey semen induces similar post-breeding endometritis as observed with horse semen. Donkey seminal plasma results in a lower post-infusion inflammatory response compared to other combinations in the immediate post-breeding.


Breeding , Endometrium , Equidae , Semen , Spermatozoa , Animals , Female , Male , Semen/metabolism , Horses/physiology , Endometrium/metabolism , Spermatozoa/metabolism , Progesterone/blood , Progesterone/metabolism
17.
Int J Biol Macromol ; 266(Pt 2): 131341, 2024 May.
Article En | MEDLINE | ID: mdl-38574922

Sialic acids are negatively charged carbohydrates that are components of saccharide chains covalently linked to macromolecules. Sialylated glycoproteins are important for most biological processes, including reproduction, where they are associated with spermatogenesis, sperm motility, immune responses, and fertilization. Changes in the glycoprotein profile or sialylation in glycoproteins are likely to affect the quality of ejaculate. The aim of this study was to determine differences in the degree of sialylation between normozoospermic ejaculates and ejaculates with a pathological spermiogram using two lectins, Sambucus nigra (SNA) and Maackia amurensis (MAL II/MAA) recognizing α-2,6 or α-2,3 linkage of Sia to galactosyl residues. Our results show a close relationship between seminal plasma (SP) sialoproteins and the presence of anti-sperm antibodies in the ejaculate, apoptotic spermatozoa, and ejaculate quality. Using mass spectrometry, we identified SP sialoproteins such as, semenogelins, glycodelin, prolactin-inducible protein, lactotransferrin, and clusterin that are associated with spermatozoa and contribute to the modulation of the immune response and sperm apoptosis. Our findings suggest a correlation between the degree of SP glycoprotein sialylation and the existence of possible pathological states of spermatozoa and reproductive organs. Glycoproteins sialylation represents a potential parameter reflecting the overall quality of ejaculate and could potentially be utilised in diagnostics.


Semen , Spermatozoa , Male , Humans , Semen/metabolism , Semen/chemistry , Spermatozoa/metabolism , Sperm Motility , Glycoproteins/metabolism , Glycodelin/metabolism , Seminal Vesicle Secretory Proteins/metabolism , Semen Analysis/methods , Clusterin/metabolism , Lectins/metabolism , Lectins/chemistry , Ejaculation , Sialic Acids/metabolism , Seminal Plasma Proteins/metabolism , Lactoferrin/metabolism , Apoptosis
18.
Pol J Vet Sci ; 27(1): 35-42, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38511589

Antiseptic agents used in the postoperative period affect the functions of many tissues in the body, including the testicles. In this study, the effect of dressings administered with different antiseptic agents on testicular functions in rats that underwent abdominal incisions was investigated. A total of 48 Sprague-Dawley rats were used in the study. Each of the rats in the study group underwent a 4 cm-long skin and muscle operation. The incision was then stitched immediately. Antiseptics, hemp seed oil, hemp leaf oil, and cannabidiol oil were then administered to the rats for 10 days to provide antisepsis. The rats were sacrificed 24 hours after the last administration, and testicular tissues were removed. Testicular tissues were used for histopathological examination and biochemical analysis, while epididymal tissue was used for sperm analysis. According to the results, the MDA level in the antiseptic-administered group was higher than in the other experimental groups (p<0.05). Levels of SOD, CAT activities, and GSH content were found to be lower in the antiseptic group than in the hemp seed oil, hemp leaf oil, and cannabidiol oil groups (p<0.05). In testicular histology, the SEED group had the highest Johnsen score, and the antiseptic group had the lowest score (p<0.05). While JAK, P-JAK2, STAT3, PSTAT3, and NF-κB were generally higher in the antiseptic group compared to the other groups, they were lower in the SEED group. Additionally, sperm total motility rate and epididymal sperm density were highest in the SEED group (p<0.05). As a result, it was determined that cannabidiol seed oil had a good effect on testicular histology and sperm quality in male rats during the wound healing process.


Anti-Infective Agents, Local , Cannabidiol , Rats , Male , Animals , Antioxidants/pharmacology , Rats, Sprague-Dawley , Cannabidiol/pharmacology , Semen/metabolism , Testis , Spermatozoa , Sperm Motility , Anti-Infective Agents, Local/pharmacology , Bandages , Oxidative Stress
19.
Reprod Biol Endocrinol ; 22(1): 31, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38509558

BACKGROUND: The incidence of male reproductive dysfunction is increasing annually, and many studies have shown that obesity can cause severe harm to male reproductive function. The mechanism of male reproductive dysfunction caused by obesity is unclear, and there is no ideal treatment. Identification of effective therapeutic drugs and elucidation of the molecular mechanism involved in male reproductive health are meaningful. In this study, we investigated the effects of the GLP-1 receptor agonist liraglutide on sex hormones, semen quality, and testicular AC3/cAMP/PKA levels in high-fat-diet-induced obese mice. METHODS: Obese mice and their lean littermates were treated with liraglutide or saline for 12 weeks. Body weight was measured weekly. Fasting blood glucose (FBG) was measured using a blood glucose test strip. The serum levels of insulin (INS), luteinizing hormone (LH), follicle stimulating hormone (FSH), testosterone (T), free testosterone (F-TESTO), estradiol (E2), and sex hormone binding globulin (SHBG) were detected using ELISA. The sperm morphology and sperm count were observed after Pap staining. The mRNA and protein expression levels of testicular GLP-1R and AC3 were measured by RT-qPCR and Western blot, respectively. Testicular cAMP levels and PKA activity were detected using ELISA. RESULTS: Liraglutide treatment can decrease body weight, FBG, INS, HOMA-IR, E2 and SHBG levels; increase LH, FSH, T, and F-TESTO levels; increase sperm count; decrease the sperm abnormality rate; and increase GLP-1R and AC3 expression levels and cAMP levels and PKA activity in testicular tissue. CONCLUSIONS: Liraglutide can improve the sex hormone levels and semen quality of obese male mice. In addition to its weight loss effect, liraglutide can improve the reproductive function of obese male mice, which may also be related to the upregulation of AC3/cAMP/PKA pathway in the testis. This work lays the groundwork for future clinical studies.


Liraglutide , Testis , Mice , Animals , Male , Testis/metabolism , Liraglutide/pharmacology , Liraglutide/therapeutic use , Mice, Obese , Semen Analysis , Blood Glucose , Semen/metabolism , Body Weight , Obesity , Gonadal Steroid Hormones , Luteinizing Hormone , Testosterone , Follicle Stimulating Hormone , Insulin
20.
J Cell Mol Med ; 28(7): e18215, 2024 Apr.
Article En | MEDLINE | ID: mdl-38509755

Oligoasthenoteratospermia (OAT), characterized by abnormally low sperm count, poor sperm motility, and abnormally high number of deformed spermatozoa, is an important cause of male infertility. Its genetic basis in many affected individuals remains unknown. Here, we found that CCDC157 variants are associated with OAT. In two cohorts, a 21-bp (g.30768132_30768152del21) and/or 24-bp (g.30772543_30772566del24) deletion of CCDC157 were identified in five sporadic OAT patients, and 2 cases within one pedigree. In a mouse model, loss of Ccdc157 led to male sterility with OAT-like phenotypes. Electron microscopy revealed misstructured acrosome and abnormal head-tail coupling apparatus in the sperm of Ccdc157-null mice. Comparative transcriptome analysis showed that the Ccdc157 mutation alters the expressions of genes involved in cell migration/motility and Golgi components. Abnormal Golgi apparatus and decreased expressions of genes involved in acrosome formation and lipid metabolism were detected in Ccdc157-deprived mouse germ cells. Interestingly, we attempted to treat infertile patients and Ccdc157 mutant mice with a Chinese medicine, Huangjin Zanyu, which improved the fertility in one patient and most mice that carried the heterozygous mutation in CCDC157. Healthy offspring were produced. Our study reveals CCDC157 is essential for sperm maturation and may serve as a marker for diagnosis of OAT.


Asthenozoospermia , Infertility, Male , Membrane Proteins , Oligospermia , Animals , Humans , Male , Mice , Asthenozoospermia/genetics , Asthenozoospermia/metabolism , Infertility, Male/genetics , Infertility, Male/metabolism , Mice, Knockout , Mutation/genetics , Oligospermia/genetics , Oligospermia/metabolism , Semen/metabolism , Sperm Motility/genetics , Spermatozoa/metabolism , Membrane Proteins/metabolism
...